Расчет оснований фундаментов мелкого заложения по несущей способности
Расчет оснований фундаментов мелкого заложения по несущей способности

Расчет оснований фундаментов мелкого заложения по несущей способности



Расчет оснований фундаментов мелкого заложения по несущей способности

Расчет оснований по несущей способности выполняется с целью проверки прочности и устойчивости основания от действия расчетных нагрузок. Потеря устойчивости основания может сопровождаться как поворотом фундамента, так и сдвигом по подошве и даже его опрокидыванием (рис.2.12а,б,в), что недопустимо из условий работы надземных конструкций.

Рис. 2.12. Возможные схемы потери устойчивости основанием: а – осадка фундамента с поворотом; б – осадка фундамента с поворотом и смещением; в – сдвиг фундамента

Потеря основанием устойчивости наступает при исчерпании прочности грунта основания в массиве, окружающем фундамент. Математически это характеризуется выполнением условия прочности Мора-Кулона, а физически выпором грунта на поверхность основания.

Расчет оснований по несущей способности заключается в ограничении величины внешней нагрузки исходя из условия:

где F — расчетная нагрузка на основание;

Fu — предельное сопротивление основания;

gc — коэффициент условий работы, который в зависимости от вида грунта изменяется от 0,8 до 1,0;

gn — коэффициент надежности, зависящий от вида здания или сооружения.

Силы F и Fu имеют одинаковое направление действия.

Вертикальная составляющая силы предельного сопротивления основания, сложенного скальными грунтами, вычисляется по формуле

где Rc — расчетное значение предела прочности на одноосное сжатие скального грунта; b¢ и l¢ — соответственно приведенные ширина и длина фундамента.

Основания ленточных фундаментов проверяются на устойчивость только в направлении короткой стороны (ширины) фундамента, а прямоугольного, квадратного и круглого — в направлении действия момента.

Приведенные размеры подошвы фундамента при внецентренном нагружении определяются из условия, что равнодействующая давлений по подошве приложена в центре тяжести площади подошвы. Подошва фундамента сложного очертания должна при этом приводиться к эквивалентной по площади подошве фундамента прямоугольной формы. Для круглого фундамента эквивалентной формой будет квадрат, а приведенной — прямоугольник (рис.2.13).

Рис. 2.13. Схемы для определения приведенных размеров подошвы фундамента:
а – прямоугольного; б – круглого.

Вертикальную составляющую силы предельного сопротивления основания, сложенного нескальными грунтами в стабилизированном состоянии Nu, определяют, если фундамент имеет плоскую подошву и грунты основания ниже подошвы однородны до глубины не менее ее ширины, а в случае различной вертикальной пригрузки с разных сторон фундамента (рис. 2.14) интенсивность большей из них не превышает 0,5·R по формуле

Источник

ФУНДАМЕНТЫ МЕЛКОГО ЗАЛОЖЕНИЯ

Фундамент – это подземная часть сооружений, которая воспринимает нагрузку от его надземной части и передает ее на основание.

— Мировой опыт строительства показывает, что большинство аварий построенных зданий и сооружений вызвано ошибками, связанными с возведением фундаментов и устройством оснований, что проявляется в накоплении грунтами основания достаточных деформаций, т.е. как правило в период эксплуатации.

— Стоимость фундаментов составляет в среднем 12% от стоимости строительства, а в сложных ИГУ может достигать 20-30 % и более. Поэтому необходимо уметь принимать (проектировать) абсолютно обоснованные и экономически выгодные конструктивные решения фундаментов.

Основанием называют толщу грунтов, на которых возводится сооружение и в которых возникают напряжения и деформации от передаваемых на них нагрузок.

Рис Основание и фундамент

Таким образом, проектирование оснований и фундаментов должно включать в себя обоснованный расчетом выбор типа основания (естественное или искусственное); типа конструкции, материала и размеров фундаментов (глубина заложения, размеры, площади подошвы и т.д.), а так же мероприятий, применяемых при необходимости уменьшения влияния деформаций основания на эксплуатационную пригодность и долговечность сооружения.

— Конструирование фундаментов (класс бетона, выбор арматуры, определение размеров отдельных его частей и т.п.) относится к курсу железобетонных конструкций.

Массивная горная порода, обладающая большой прочностью и малой сжимаемостью.

Изучением свойств скальных оснований и их поведением под нагрузкой занимается наука «Механика скальных грунтов».

Раздробленная горная порода (минерально-дисперстное образование) – результат физического и химического выветривания массивных горных пород.

Грунтовое основание обладает большой сжимаемость и малой прочностью, что необходимо учитывать при проектировании.

— Проектирование ОиФ производится в соответствии с нормативными документами.

При этом необходимо:

1) Обеспечить прочность и эксплуатационную надежность сооружения (абсолютные осадки, а также их разность, не должны превышать допускаемые для данных сооружений), т.е. S≤Su.

2) Максимально использовать прочностные свойства грунтов, а также материалов фундаментов.

3) Минимальная стоимость фундамента, сокращение трудоемкости и сроков производства работ.

Порядок проектирования ОиФ

1. Изучить материалы инженерно-геологических, гидрогеологических и геодезических изысканий на площадке будущего строительства. (Обязательно должно быть изучение архивных материалов, особенно в условиях городской застройки.)

2. Произвести анализ проектируемого здания с точки зрения оценки его чувствительности к неравномерным осадкам.

3. Определить нагрузки на фундаменты.

4. Выбрать несущий слой грунта.

5. Рассчитать предложенные варианты фундаментов по 2-м предельным состояниям (прочность и деформации).

6. Произвести экономическое сравнение вариантов и выбрать наиболее дешевый.

7. Произвести полный расчет и проектирование выбранного варианта фундамента.

ФУНДАМЕНТЫ МЕЛКОГО ЗАЛОЖЕНИЯ

Основные сведения

К ФМЗ относятся фундаменты, имеющие отношение высоты к ширине подошвы, не превышающее 4, и передающие нагрузку на грунты основания преимущественно через подошву.

ФМЗ возводятся в открытых котлованах или в специальных выемках, устраиваемых в грунтовых основаниях.

Рис 10.1. Схема фундамента мелкого заложения:

1 – фундамент; 2 – колонна; 3 – обрез фундамента.

— ФМЗ по условиям изготовления разделяют на:

· монолитные, возводимые непосредственно в котлованах.

· сборные, монтируемые из элементов заводского изготовления.

— По конструктивным решениям ФМЗ разделяют на:

· отдельно стоящие фундаменты:

a) под колонну (опору);

b) под стены (при малых нагрузках)

a) выполняются под протяженные конструкции (стены);

b) выполняются под ряды и сетки колонн в виде одинарных или перекрестных лент.

· сплошные (плитные) фундаменты

Выполняются в виде сплошной железобетонной плиты, как правило, под тяжелые сооружения. Такие фундаменты разрезаются в плане только осадочными швами, что способствует уменьшению неравномерности осадки сооружения.

Выполняются в виде жесткого компактного железобетонного массива под небольшие в плане тяжелые сооружения (башни, мачты, дымовые трубы, доменные печи, устои мостов и т.п.).

Рис 10.2. Основные типы фундаментов мелкого заложения:

а – отдельный фундамент под колонну; б – отдельные фундаменты под стену; в – ленточный фундамент под стену; г – то же, под колонны; д – то же, под сетку колонн; е – сплошной (плитный) фундамент.

— ФМЗ изготовляют из следующих матреиалов:

· каменные материалы (кирпич, бут, пиленные блоки из природных камней)

· в отдельных случаях (временные здания) допускается применение дерева или металла.

Железобетон и бетон – основные конструкционные материалы для фундаментов.

Бутовый камень, кирпич и каменные блоки используются для устройства фундаментов, работающих на сжатие и для возведения стен подвалов.

Бутобетон и бетон целесообразно применять при устройстве фундаментов, возводимых в отрываемых полостях или траншеях при их бетонировании в распор со стенками.

Железобетон и бетон можно применять при устройстве всех видов монолитных и сборных фундаментов в различных ИГУ, т.к. они обладают достаточной морозостойкостью, прочностью на сжатие (а для железобетона и на растяжение → действие моментов).

А. Отдельные фундаменты

Могут выполняться в монолитном или сборном варианте. Представляют собой кирпичные, каменные, бетонные или железобетонные столбы с уширенной опорной частью.

Читайте также:  Система финансов понятие и общая характеристика

— Фундаменты имеют наклонную боковую грань или, что чаще, уширяются к подошве уступами, размеры которых определяются углом жесткости α (≈30-40º), т.е. предельным углом наклона, при котором в теле фундамента не возникают растягивающие напряжения.

Рис 10.3. Конструкция жесткого фундамента:

а – с наклонными боковыми гранями; б – уширяющийся к подошве уступами.

— Сопряжение сборных колонн с фундаментом осуществляется с помощью стакана (фундаменты стаканного типа), монолитных колонн – соединением арматуры колонн с выпуском из фундамента, а стальных колонн – креплением башмака колонны к анкерным болтом, забетонированным.

Рис 10.4. Сборный фундамент под колонну:

а – из нескольких элементов; б – из одного элемента; 1 – фундаментные плиты; 2 – подколонник; 3 – рандбалка; 4 – бетонные столбики; 5 – монтажные петли.

— Размеры в плане подошвы, ступеней и подколонника монолитных фундаментов принимаются кратным 300 мм, а высота ступеней — кратной 150 мм.

— При устройстве отдельных фундаментов под стены по обрезу фундаментов, а при необходимости и через дополнительные опоры, укладываются фундаментные балки (рандбалки), на которые упираются подземные конструкции (рис 10.4.а).

— В тех случаях, когда это возможно, сборный фундамент устраивают из одного элемента (рис 10.4.б) или переходят на монолитный вариант фундамента.

— с целью сокращения трудоемкости работ по устройству фундаментов и уменьшению их стоимости создаются новые типы фундаментов, которые в соответствующих грунтовых условиях оказываются более экономичными по сравнению с традиционными типами.

Рис 10.5. Буробетонные (а), щелевые (б) и анкерные (в) фундаменты:

1 – колонна; 2 – арматурный каркас; 3 — фундамент; 4 – подколонник; 5 – плитная часть; 6 – бетонные пластины; 7 – анкеры (буронабивные сваи) d=15-20см, l=3-4м.

Б. Ленточные фундаменты

· Под стены: также устраивают либо из сборных блоков, либо монолитными.

Рис 10.6. Ленточные фундаменты:

а – монолитный; б – сборный сплошной; в – сборный прерывистый; 1 – армированная лента; 2 – фундаментная стена; 3 — стена здания; 4 – фундаментная подушка; 5 – стеновой блок.

— Чтобы уменьшить объем железобетона в теле фундамента, иногда применяют ребристые железобетонные блоки или плиты с угловыми вырезами (рис 10.7).

Рис 10.7. Конструкции фундаментных плит:

а – сплошная; б – ребристая; в – с угловыми вырезами.

— Фундаментные стеновые блоки (ФБС) изготовляют из тяжелого бетона, керамзитобетона или плотного силикатного бетона. Ширина блоков принимают равной (или меньше) толщине надземных стен, но не менее 30 см.

Надземные стены не должны выступать над фундаментными более чем на 15 см.

Высота типовых стеновых блоков составляет 280 или 580 мм (20 на цементный шов).

— Для повышения жесткости сооружения (выравнивания осадок, антисейсмические мероприятия и т.п.) сборные фундаменты усиливают армированными швами или железобетонными поясами, устроенных поверх фундаментных плит или последнего ряда стеновых блоков по всему периметру здания на одном уровне.

· Под колонны: устраивают в виде одиночных или перекрестных лент и выполняют, как правило, в монолитном варианте из железобетона. Возможно их устройство и в сборном варианте в виде отдельных блоков, соединяемых между собой с последующим омоноличиванием стыков.

В. Сплошные фундаменты

Выполняются, как правило, из монолитного железобетона.

— По конструктивным особенностям различают:

· Плитные (гладкие, ребристые);

Рис 10.8. Сплошные фундаменты:

а – гладкая плита со сборными стаканами; б – гладкая плита с монолитными стаканами; в – ребристая плита; г – плита коробчатого сечения.

— Толщину плиты определяют расчетом на моментные нагрузки (от изгиба в двух взаимно перпендикулярных направлениях) и исходя из расчета на продавливание в местах опирания колонн.

— Опирание колонн осуществляется через сборные и монолитные стаканы, ребристые плиты соединяются с колоннами с помощью монолитных стаканов или выпусков арматуры.

Г. Массивные фундаменты

Выполняются в монолитном варианте.

С целью сокращения объема бетона в тело массивного фундамента закладывают пустообразователи.

При передаче на такой фундамент больших моментов (мачты, дымовые трубы и т.п.) целесообразно его усиление анкерами, что позволяет повысить устойчивость сооружения, уменьшить его размеры и массу.

Рис 10.9. Массивный фундамент с пустообразователями:

1 – фундамент; 2 – пустообразователи.

Б. Дренаж

Это система дрен и фильтров, которая служит для перехвата, сбора и отвода подземных вод от сооружения.

Дренажи могут устраиваться как для одного здания (кольцевой дренаж), так и для комплекса зданий (систематической дренаж), что более экономично, за счет меньшей протяженности.

1. Траншейные дренажи.

(открытые дренажи и канавы).

Рис. Схема траншейного дренажа

Являясь эффективным средством водопонижения (отвода вод), они в тоже время занимают большие площади, осложняют устройство транспортных коммуникаций и требуют больших затрат для поддержания их в рабочем состоянии.

2. Закрытый беструбчатый дренаж – траншея, заполненная фильтрующим материалом (гравий, щебень, камень) от дна до уровня подземных вод (рис 14.12а)

Предназначен для недолговременной эксплуатации (период пространства работ нулевого цикла).

Рис.14.12. Виды тренажей:

а — закрытый беструбчатый; б – трубчатый совершенного типа; в – трубчатый несовершенного типа; г – дренажная галерея; 1 – дерн корнями вниз; 2 – уплотненная глина; 3 — дерн корнями вверх; 4 – обратная засыпка из метного песчаного грунта; 5 – щебень; 6 – каменная кладка; 7 – глинобетонная подушка; 8 – песок средней крупности; 9 – труба; 10 – водоупор; 11 – обделка из сборных железобетонных элементов; 12 – дренажная засыпка; 13 – отверстия для воды.

3. Трубчатый дренаж – дырчатая труба (перфорированная) с обсыпкой песчано-гравийной смесью или с фильтровым покрытием из волокнистого материала (рис 14.12.б,в).

4. Галерейный дренаж – применяют в ответственных сооружениях и там, где большой приток воды (рис 14.12. г).

5. Пластовый дренаж – слой фильтрующего материала, уложенный под всем сооружением (рис 14.13). Вода из него отводится с помощью обычных трубчатых дрен. Состоит, как правило, из двух слоев:

— Нижний (h ≥ 100 мм) – песок средней крупности;

— Верхний (h ≥ 150 мм) – щебень или гравий.

Рис. 14.13. Пластовый дренаж:

1 – уровень подземных вод; 2 – защищаемое заглубленное помещение; 3 – пристенный дренаж; 4 – песчаный слой; 5 – защитное покрытие щебеночного слоя; 6 – песчано-гравийный или щебеночный слой; 7 – труба.

· Часто при защите отдельных зданий пластовый дренаж сочетается с пристенным (сопутствующим) дренажом – вертикальный слой из проницаемого материала, устраиваемый с наружной стороны фундамента и заглубляемый ниже его подошвы.

При неглубоком залегании водоупора и слоистом основании иногда достаточно устройства только одного пристенного дренажа.

· Собираемые воды отводятся и сбрасываются в водоемы, дождевую канализацию или другие специальные места.

Гидроизоляция предназначена для обеспечения водонепроницаемости сооружений (антифильтрационная гидроизоляция), а также защиты от коррозии и разрушения материалов фундаментов при физической или химической агрессивности подземных вод (антикоррозионная гидроизоляция).

1). Простейший случай – защита от капиллярной влаги.

На высоте 15-20 см от верха отмостки по выровненной горизонтальной поверхности стен устраивают непрерывную водонепроницаемую прослойку из 1…2 слоев рулонного материала на битумной мастике (рис.)

Рис. 14.14. Изоляция стен от сырости и капиллярной влаги:

а – стена бесподвального здания; б – стена подвального помещения; 1- цементный раствор или рулонный материал; 2 – обмазка битумом за два раза.

Читайте также:  Насколько быстро сохнет бетонная смесь

2). Если уровень грунтовых вод находится ниже пола подвала (рис.14.14 б), то для защиты фундаментов применяют изоляцию от сырости.

Для этого с наружной поверхности заглубленных стен осуществляется обмазка горячим битумом за 1…2 раза и прокладываются рулонная изоляция в стене на уровне ниже пола подвала.

3). Если УГВ выше отметки пола подвала, то гидроизоляцию осуществляют в виде сплошной оболочки, защищающей заглубленное помещение снизу и по бокам.

Выполняется из рулонных материалов с не гниющей основой (гидроизол, стеклорубероид, металлоизол, толь и т.п.) – оклеичная гидроизоляция.

— Вертикальная гидроизоляция наклеивается, как правило, с наружной стороны фундамента, т.к. в этом случае под действием напора подземных вод изоляция просто прижимается к изолируемой поверхности.

Для предохранения изоляции от механических воздействий (например, при обратной засыпки) снаружи ее ограждают защитной стенкой из кирпича, бетона или блоков (рис. 14.15.) Зазор между стенкой и гидроизоляцией заполняют жидким цементным раствором.

Рис. 14.15. Гидроизоляция подвальных помещений:

а – при небольших напорах подземных вод; б, в – при больших напорах подземных вод; 1 – защитная стенка; 2 – уровень подземных вод; 3 – битумная обмазка; 4 – цементный раствор или рулонный материал; 5 – рулонная изоляция; 6 – защитный цементный слой; 7 – бетонная подготовка; 8 – цементная стяжка; 9 – железобетонное ребристое перекрытие; 10 – железобетонная коробчатая канструкция

Горизонтальная гидроизоляция наклеивается на выровненную цементной стяжкой поверхности подготовки и защищается сверху цементным или асфальтовым слоем t=3…5см.

· Гидростатической давление воды при УГВ до 0,5 м выше пола подвала компенсируются весом конструкции пола (рис. 14.15 а)

· Если УГВ выше отметки пола подвала более чем на 0,5 м, то применяют специальные конструкции (заделанные в стены ж/б плиты, специальной плиты с упорами в стены здания и т.п.) – рис.14.15 б, в.

· В любом случае гидроизоляция должна устраиваться на высоту превышающую максимальную отметку УГВ на 0,5 м.

4). Защита от коррозии.

При слабоагрессивных водах делают глиняный замок из хорошо перемятой и плотоноутрамбованной глины по всей высоте защитной стенки и с боков фундаментов (рис. 14.16)

Рис. 14.16. Изоляция фундаментов от агрессивных подземных вод:

1 – глиняный замок из перемятой глины; 2 – обмазка битумом за три раза; 3 – защитная стенка; 4 – рулонная изоляция; 5 – чистый пол; 6 – железобетонное перекрытие; 7 – защитный слой; 8 – цементная стяжка; 9 – щебеночная или гравийная подготовка на битуме.

— При более агрессивных водах до устройства глиняного замка поверхность защитной стенки и фундаментов покрывают за 2 раза битумной мастикой или оклеичной изоляции из битумных рулонных материалов.

Снизу фундамента и под полом подвала изоляция имеет более сложную конструкцию (см. рис.)

— На ряду с антикоррозионной изоляцией фундаменты защищают за счет применения более стойких к данному виду агрессивности цементов (сульфатостойкие и т.п.), а также плотных бетонов.

ПРОЕКТИРОВАНИЕ КОТЛОВАНОВ

Общие положения

· Котлованами называют выемки различные по глубине, но с достаточно большими размерами в плане, устраиваемые в грунте и предназначенные для различных целей: устройство фундаментов, монтажа подземных конструкций и оборудования, прокладки туннелей и коммуникаций и т.п.

· Выемки, имеющие малую ширину и большую длину, называют траншеями, а имеющие малые размеры в плане и большую глубину – шахтами.

— Проект котлована является составной частью общего проекта здания или сооружения и включает в себя:

Источник

Расчет фундаментов мелкого заложения по несущей способности

Несущую способность основания оцениваем методом теории предельного равновесия, используя формулу:

(2.19)

b и l – соответственно ширина и длина фундамента: b = 4 м, l = 12.7 м;

Nγ , Nq , Nc – коэффициенты несущей способности, определяемые по [5]:

γI – осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента: γI = 0.96 тс/м 3 ;

γ’I – осредненное расчетное значение удельного веса грунтов, залегающих выше подошвы фундамента: γ’I = 0.97 тс/м 3 ;

cI – расчетное значение удельного сцепление грунта: cI = 0 тс/м 3 ;

d – глубина заложения фундамента: d = 2.5 м;

Устойчивость основания и фундамента обеспечена при выполнении условия:

(2.20)

γс – коэффициент условий работы для песков пылеватых: γс = 0.9;

γn – коэффициент надежности по назначению сооружения: γn = 1.15.

Источник

Особенности строительства оснований мелкого заложения

Внешний вид фундамента мелкого заложения
Существует множество разновидностей фундаментов, позволяющих реализовать различные архитектурные проекты даже при максимально негативных условиях грунта. И первое, с чем приходится бороться застройщикам, это – повышенная пучинистость почвы, на которой будут проводиться работы. Фундаменты мелкого заложения в данном случае являются оптимальным решением для частного строительства на мелких песках, супесях, суглинках и глинистых грунтах.

Преимущества и недостатки

Взвешенное решение базируется на здравом анализе плюсов и минусов конкретного развития событий. Такой подход должен касаться и фундамента мелкого заложения. Среди плюсов такого фундамента легко отметить:

  • сравнительно низкую цену;
  • относительная простота монтажа;
  • применение на большинстве видов почвы;
  • долговечность;
  • меньший расход материала;
  • устойчивость к изменениям в грунте.

Цена мелкозаглубленного ленточного фундамента получается в разы ниже, чем у аналогичной плитной конструкции. В сравнении с фундаментом глубокого заложения расходы на такую конструкцию могут быть снижены в несколько раз. Монтаж такой конструкции при должном терпении выполняются самостоятельно, что позволяет проводить работы в свободное время. Фундамент мелкого заложения применяется практически на всех видах почвы в отличие от фундамента глубокого заложения. Это связано с особым способом распределения нагрузки в конструкции фундамента. Срок службы такой конструкции с легкостью достигает нескольких десятков лет, если соблюсти все нюансы при выполнении монтажа. Расход материала уменьшается пропорционально стоимости мелкозаглубленного фундамента в сравнении с другими вариантами конструкции. Фундамент мелкого заложения в определенной степени способен нивелировать сезонные изменения, которые происходят в почве.

Источник

Несущая способность оснований фундаментов: расчет

Сразу же после сдачи любого сооружения в эксплуатацию, происходит процесс медленного опускания фундамента за счет прикладываемых нагрузок. Фундамент всегда опускается на расчетную глубину, это значение всегда учитывается и закладывается при проведении расчетов.

Большие, неравномерные осадки оснований влекут за собой деформацию конструкций с дальнейшим разрушением здания. Как правило причина кроется в неправильном расчете несущей способности фундаментов, а также из-за ошибок в расчетах допустимых нагрузок на грунты.

Необходимость геологических исследований

Для определения типа фундаментов, а также в расчете ориентировочной просадки грунтов зоны строительства, в обязательном порядке проводятся геологические исследования. С их помощью определяется тип почвы, глубина промерзания, уровень залегания грунтовых вод, структура грунта и прочие параметры. Поэтому несущая площадь фундамента должна быть такой, чтобы ее масса вместе с будущим зданием не превышала расчетное сопротивление грунта на строительной площадке.

Только тогда получится качественный, надежный фундамент, способный выдерживать горизонтальные и вертикальные нагрузки. При этом строить дополнительные этажи без укрепления существующего фундамента запрещено, так как в таком случае резко увеличивается масса объекта в целом.

Что подразумевают под расчетной способностью грунтов?

Несущую способность грунтов оценивают в комплексном порядке при расчете фундаментов и сооружений. Главная цель такого расчета – это обеспечить прочность, устойчивость грунтов под подошвой фундамента, не допустить сдвиг здания по подошве в любую сторону.

Читайте также:  Декорирование свайно винтового фундамента

Нарушение правильного состояния здания может привести не только к накоплению осадок, но впоследствии к нарушению конструкции самого основания. На фундамент также влияют вертикальные, горизонтальные нагрузки со стороны почвы и самого здания, поэтому грунт может просто не справиться с такой массой. Именно по этой причине особое внимание уделяют расчетам несущей способности оснований фундаментов, чтобы максимально определить допустимую зону нагрузки и защитить грунт от полного разрушения.

Какие факторы влияют на состояние грунта и основания?

На несущую способность влияет огромное количество различных факторов, среди которых стоит отметить:

  • вид и характер нагрузок − вертикальная, наклонная, горизонтальная или, непосредственно, нагрузка под подошвой;
  • распределение центра тяжести площади фундамента относительно эксцентричной нагрузки;
  • размеры, характеристики, габариты и материал выполнения подошвы;
  • структура грунта;
  • форма подошвы;
  • глубина погружения основания в грунт, а также наличие под подошвой мягких осадочных пород с малой сопротивляемостью;
  • насколько ровно расположена подошва относительно горизонтали;
  • степень однородности почвы;
  • наличие внешних факторов, которые могут нанести вред подошве, такие как вибрация, сейсмические сдвиги, сезонный подъем грунтовых вод.

Все расчеты несущей способности оснований нужно делать по СНиП 2.02.01-83. Поэтому, обеспеченная несущая способность вычисляется по формуле: F ≤ YcFu/Yn, где:

  • F – это равнодействующая сила, она должна быть разнонаправлена к основной нагрузке;
  • γс – коэффициент условий работы;
  • Fu— это максимальное сопротивление основания всем нагрузкам;
  • γn— коэффициент надежности по назначению сооружения, принимается равным 1,2; 1,15; 1,10 для сооружений I, II и III классов соответственно.

Когда нужно делать расчет оснований на несущую способность

  1. Если на существующее или новое основание воздействуют значительные горизонтальные нагрузки, особенно от строящихся по соседству домов или регулярные вибрации от автомагистралей, промышленных предприятий.
  2. Сооружение было построено на уклоне или откос образовался со временем, обнажив внешнюю часть основания.
  3. Если подошва фундамента установлена на влагонасыщенных почвах.
  4. Когда на основание может воздействовать выталкивающая сила различного происхождения.
  5. Если нужно проверить устойчивость естественных и искусственных склонов.

Если на строительной площадке или в фундаменте существующего здания уже появились видимые деформации конструкций, всегда сначала обращают внимание на состояние почвы под подошвой и определяют их состояние. Поэтому, по нормативам существует сразу несколько различных видов деформаций почвы, которые зависят от внутренних и внешних факторов.

Этапы деформаций грунтов в классическом виде

В современной литературе принято различать три основных фазы деформирования грунтов:

  1. Начальная. Это этап уплотнения почвы под влиянием внешних факторов, происходит из-за уменьшения пор между частицами почвы под подошвой. Фаза отличается тем, что сейчас не происходит сдвига фундамента, ведь все касательные нагрузки равноценные и компенсируются нагрузкой. Но нагрузка всегда возникает спонтанно, она распределяется неравномерно. В результате, в одной точке деформация может быть незначительной, а в другой – сильной. Как итог – происходят сдвиги основания.
  2. Вторая стадия – фаза сдвига подошвы основания. По мере увеличения нагрузок грунт сжимается все сильнее, захватывает новые районы, происходит значительный сдвиг подошвы в сторону большей нагрузки. Нарушается стандартное равновесие, под подошвой образуется плотный шар почвы, а по сторонам – пустое пространство. Материал фундамента стремится занять освободившееся место за счет естественных сил тяготения, поэтому возникают трещины и разрывы в основании, а затем в несущих стенах дома.
  3. Третья фаза – это разрушение подошвы. Тут уже материал подошвы выпирает плотный шар грунта и сразу деформируется.

Такая ситуация возникает с теми фундаментами, которые заложены выше граничной глубины промерзания почвы или сверху над горизонтами грунтовых вод. Немного иная картина происходит с глубоко заложенными основаниями. В таких случаях под подошвой также образуется плотный слой грунта, но его не выпирает на поверхность из-за большой площади перекрытия подошвы. Поэтому такой фундамент обладает лучшими несущими способностями, чем мелкозаглубленный.

Если начинается процесс деформации грунтов, то его порой остановить уже нет возможности. Единственный выход, это устраивать специальные защитные конструкции, способные нивелировать нагрузки или по максимуму снизить их воздействие.

Влияние размеров фундамента на несущую способность основания

Некоторые строители вынуждены для одного сооружения использовать сразу несколько различных видов фундаментов. Причем расчеты нужно делать для каждой подошвы индивидуально. Также возможно применение оснований с длиной, значительно превышающих их ширину.

Графики указывают, что с увеличением ширины фундамента увеличивается объем грунта, способного привести к разрушению подошвы. Поэтому при абсолютно одинаковых условиях и составу грунта, узкие фундаменты менее склонны к деформации, чем широкие.

Также несущая способность оснований зависит от их формы и используемых строительных материалов. Если два фундамента имеют абсолютно одинаковые размеры, одинаково заглублены в грунт, но один имеет длину и ширину практически одинаковую, а другой – более длинный, тогда первая конструкция будет создавать большую нагрузку на грунт, чем другая.

Причина кроется в особенностях подошвы. Для деформации и сдвига квадратного или круглого фундамента нужно затратить больше энергии, чем для ленточного длинного. Также необходимо учесть, что на песчаное основание размеры и форма фундамента влияет больше, чем на глинистые грунты.

Как влияет глубина заложения фундамента на несущую способность оснований

Почему глубоко погруженные основания менее склонны к разрушениям, чем мелкозаглубленные? Ведь мелкие основания нужно обязательно укреплять, подбирать оптимальную конструкцию свай и делать сложные расчеты. Причина здесь кроется в характере поведения грунтов на различных глубинах.

Так для песчаных оснований увеличение глубины погружения фундамента ведет за собой снижение осадки, а вот несущая способность резко увеличивается. Аналогичная ситуация наблюдается с любыми иными почвами, в составе которых есть песок в больших количествах.

Поэтому в зависимости от глубины заложения, различают мелкие и глубокие основания. Понятно, что для каждого типа приходится использовать свои строительные материалы и технику, но при этом надежность конструкций отличается в несколько раз.

Как происходит деформация песчаных грунтов под подошвой фундаментов мелкого заглубления? Сначала происходит укрупнение почвы под подошвой, затем она клиньями поднимается по разные стороны конструкции и формирует свободную полость под подошвой. Поэтому даже незначительные сдвиги и подвижки почвы, повлекут за собой частичное разрушение несущих конструкций. Часто наблюдаются сдвиги и провалы.

А вот фундаменты глубокого заложения разрушить значительно сложнее. Смещение почвы будет практически полностью нейтрализовано вертикальным перемещением почвы по сторонам поверхности основания, и в данном случае могут быть только локальные уплотнения почвы. Разрушение фундамента в третьей фазе деформации почвы имеет спокойный характер. Зависимость глубины фундамента от осадки на глинистых почвах практически не проявляется.

Таким образом, несущая способность оснований – это важный показатель состояния грунтов и пренебрегать им нельзя. Если правильно сделать расчет и учесть все факторы, то уже по готовому результату можно подобрать не только оптимальные размеры и форму будущего фундамента, но и обнаружить скрытые проблемы в уже существующем. И в дальнейшем оперативно принять меры по срочному ремонту или усилению конструкций, чтобы они не деформировались от внешнего воздействия.

Источник

Adblock
detector