Расчет фундамента мелкого заложения
Расчет фундамента мелкого заложения

Расчет фундамента мелкого заложения



Расчет фундамента мелкого заложения

Расчет фундамента мелкого заложения

Расчет ширины ленточного фундамента мелкого заложения основан на определении удельной нагрузки дома на единицу площади и несущей способности грунта под фундаментом. При этом несущая способность грунта должна быть больше удельной нагрузки дома как минимум на 30%(коэффициент запаса прочности):

полный вес здания*1.3 = несущая способность грунта

В свою очередь несущая способность грунта определяется по формуле:

несущая способность грунта = ширина фундамента*длина фундамента*расчетное сопротивление грунта

Таким образом, для расчета ширины ленточного фундамента мелкого заложения необходимо рассчитать полный вес дома, определиться с длиной фундамента и расчетным сопротивлением грунта.

Полный вес дома складывается из веса самого дома, веса мебели и оборудования, снеговой и ветровой нагрузки.

Вес всего дома складывается из веса стен (таблица 1), веса перекрытий (таблица 2) и веса кровли (таблицы 3,4,5)

Каркасные стены толщиной150 ммс утеплителем

Стены из бревен и бруса

Блоки из ячеистого бетона плотностью 500-600 кг/м 3 , толщиной в мм 200, 250, 300, 350

100-120; 125-150; 150-180; 175 -210

Керамзитобетон толщиной350 мм

Шлакобетон толщиной350 мм

Железобетон толщиной150 мм

Сплошная кирпичная кладка из полнотелого кирпича, толщиной в мм 250, 380, 510

450-500; 700-750; 900-1000

Пример расчета. Предполагается построить одноэтажный дом площадью 10*10 м с одной внутренней стеной, высота потолка 3м. Тогда общая площадь всех стен дома составит:

S = (10*4)*3+10*3=150 м 2 ;

При условии, что предполагается построить кирпичный дом толщиной в пол-кирпича, выбираем из таблицы соответствующее значение. Получаем, что все стены дома дадут нагрузку:

750 кг/м 2 *150м 2 =112500 кг

К нагрузке от стен дома добавляем нагрузку от перекрытий.

Тип перекрытия

Удельный вес, кг/м 2

Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м 3

То же с утеплителем плотностью до 300 кг/м3

То же с утеплителем плотностью до 500 кг/м3

Цокольное перекрытие по деревянным балкам с утеплителем, плотностью до 200 кг/м3

То же, плотностью до 300 кг/м3

То же, плотностью до 500 кг/м3

Пример расчета. Принимаем чердачное перекрытие плотностью 300 кг/м 3 и цокольное железобетонное перекрытие. При площади одноэтажного дома в 100 м 2 , суммарный вес перекрытий составит:

100м 2 *150кг/м 2 +100м 2 *500 кг/м 2 =65000 кг

Далее к весу дома необходимо прибавить нагрузку от кровли, которая складывается из веса стропильных материалов и веса кровельных материалов. Рассчитать вес стропильной системы помогут таблицы

Размер бруса

Количество бруса в м 3 , длина 6м

Объем одного бруса, длиной 6м, м 3

Размер доски, мм

Количество досок в м3, длина6 м

Объем одной доски, м 3 , длина6 м

Удельный вес кровельных покрытий в зависимости от материала.

Вид кровли

кг/м 2

Оцинкованная сталь, профлист

Для расчета веса кровли, примем площадь проекции на основание120 м 2 , при угле наклона кровли 30 0 .

Пример расчета. Допустим, на стропильную систему потребуется 32 доски 200 мм*50 мм и 10 брусов 150 мм*100 мм. При удельном весе пиломатериалов 500 -550 кг/м 3 рассчитаем вес стропил:

((32*0.06) + (10*0.09))*500 =1410 кг.

Прибавляем вес кровельного материала, например, ондулина:

150 м 2 *4 кг/м 2 =600 кг

Итого вес кровли:

1410 кг+600 кг=2010 кг

Снеговая нагрузка на дом принимается в соответствии с климатическим районом строительства (таблица 6)

Климатический район строительства

Город

Снеговая нагрузка, кг/м 2

Астрахань, Чита, Благовещенск

Ростов-на-Дону, Краснодар, Хабаровск

Москва, Тамбов, Екатеринбург

Санкт-Петербург, Ярославль, Кемерово

Пермь, Салехард, Нижневартовск, Магадан

Восточное побережье Камчатки

С подробной картой снеговой нагрузки можно ознакомиться в СНиП 2.01.07-85 «Нагрузки и воздействия»

Наш дом строится в Ростове-на-Дону ( II климатический район), следовательно, снеговую нагрузку принимаем:

120 м 2 *120 кг/м 2 =14 400 кг

Для расчета ветровой нагрузки используйте таблицы и диаграммы из СНиП 2.01.07-85 «Нагрузки и воздействия», или воспользуйтесь формулой, которую часто применяют на практике:

площадь здания*(15*высота дома+40) = ветровая нагрузка

100 м 2 * (15*7+40) =14 500 кг

Далее необходимо рассчитать нагрузку от того, что будет наполнять дом – мебель и пр. В этом поможет таблица 7

Здание

Нагрузка, кг/м 2

Квартиры, общежития, гостиницы, детские сады. дома отдыха

Административные здания, школы

Кабинеты и лаборатории научных, лечебных и образовательных учреждений

Читальные залы библиотек

Кафе, рестораны, столовые

Концерные, спортивные залы

Перекрытия с возможным скоплением людей

Мы строим жилой дом, поэтому полезную нагрузку принимаем:

100 м 2 *195 кг/м 2 =19 500 кг

Итак, мы получили все цифры, нужные для расчета ширины ленточного фундамента:

Вес стен дома 10 м*10 м с одной поперечной лентой112500 кг

Вес перекрытий 65 000 кг

Вес кровли 2010 кг

Снеговая нагрузка 14 400 кг

Ветровая нагрузка 14 500 кг

Полезная нагрузка 19 500 кг

Итого полный вес дома 227 910 кг.

Подставляем эти цифры в формулу:

полный вес дома*1.3 = несущая способность грунта (1)

Несущая способность грунта, в свою очередь, определяется как:

несущая способность грунта = ширина фундамента*длина фундамента*расчетное сопротивление грунта (2)

Используя эти две формулы легко произвести расчет ширины ленточного фундамента:

Ширина фундамента = (полный вес дома*1.3)/(длина фундамента*расчетное сопротивление грунта) (3)

Расчетное сопротивление грунта возьмем из таблицы 8 (сводная таблица из СНиП 2.02.01-83 «Основания зданий и сооружений»

Тип грунта

Расчетное сопротивление грунта, кг/см 3

Крупнообломочные галечниковые (щебенистые) с песчаным заполнителем

Крупнообломочные галечниковые (щебенистые) с пылевато-глинистым заполнителем

Крупнообломочные гравийные (дресвяные) с песчаным заполнителем

Крупнообломочные гравийные (дресвяные) с пылевато-глинистым заполнителем

Песок средней крупности

Мелкий маловлажный песок

Мелкий влажный и водонасыщенный песок

Пылеватый маловлажный песок

Пылеватый влажный песок

Пылеватый водонасыщенный песок

Супесь (зависит от пористости и текучести)

Суглинки (зависит от пористости и текучести)

Глина плотная (зависит от текучести)

Глина средней плотности (зависит от текучести)

Глина пластичная (зависит от текучести)

Глина водонасыщенная (зависит от текучести)

Полученные данные подставляем в формулу (3):

Ширина фундамента = (227 910*1.3)/(5000 (длина фундамента в см)*1 кг/см 2 (значение для водонасыщенной глины))

Получаем достаточную ширину фундамента 59.6 или 60 см.

Напомним, что ширина фундамента обязательно должна быть больше ширины стены.

Из вышеприведенного расчета понятно, что наибольшую сложность представляет определение расчетного сопротивления грунта на вашей строительной площадке. Если нет опыта, то лучше заказать инженерно-геологические исследования.

Глубина заложения ленточного фундамента

При определении глубины заложения ленточного фундамента можно руководствоваться таблицей 9

Грунт

Глубина заложения фундамента, см

Каменистый скальный грунт

Пески, супеси, суглинки

Минимальная глубина заложения малозаглубленного ленточного фундамента зависит от высоты грунтовых вод, степени пучинистости грунта и глубины промерзания грунта. Чем больше глубина промерзания грунта, чем больше в грунте воды и чем ближе она к поверхности, , тем сильнее будут морозные силы пучения. Эти силы будут выталкивать фундамент к поверхности, и сдавливать его с боков. Чтобы снизить воздействие этих сил ленточный фундамент необходимо будет заглубить. Но существуют более экономичные способы борьбы с морозным пучением грунта. Это утепление фундамента и грунта вокруг него, дренирование грунта вокруг фундамента, создание подушки из непучинистого материала (крупный песок) под фундаментом и вокруг него.

Если грунт на вашей строительной площадке сильнопучинистый или грунтовые воды стоят слишком высоко, возможно стоит отказаться от применения ленточного фундамента мелкого заложения в пользу свайного или свайно-ростверкого.

Источник

Порядок проектирования фундаментов мелкого заложения.

Изучить материалы инженерно-геологических, гидрогеологических и геодезических изысканий на площадке будущего строительства. (Обязательно должно быть изучение архивных материалов, особенно в условиях городской застройки.)

Произвести анализ проектируемого здания с точки зрения оценки его чувствительности к неравномерным осадкам.

Определить нагрузки на фундаменты.

Выбрать несущий слой грунта.

Рассчитать предложенные варианты фундаментов по 2-м предельным состояниям (прочность и деформации).

Произвести экономическое сравнение вариантов и выбрать наиболее дешевый.

Произвести полный расчет и проектирование выбранного варианта фундамента

Расчет ФМЗ начинают с предварительного выбора его конструкции и основных размеров (это глубина заложения фундамента и размер его подошвы).

Далее производят расчет по двум предельным состояниям:

I – Расчет по прочности (устойчивость)

II – Расчет по деформациям, которые являются основным и обязательным для всех ФМЗ.

А расчет по I группе предельных состояний является дополнительным и производится в одном из следующих случаев:

Сооружение расположено на откосе (склоне) или вблизи него;

На основание передаются значительные по величине горизонтальные нагрузки;

В основании залегают очень слабые грунты (или текучие и текучепластичные глинистые грунты и т.п.), обладающие малому сопротивлению сдвигу;

В основании залегают наоборот, очень прочные – скальные грунты.

Установив окончательные размеры фундамента, удовлетворяющие двум группам предельного состояния, переходят к его конструированию (курс ЖБК).

1.3.а. Определение глубины заложения фундамента

Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения. Однако при выборе глубины заложения фундамента приходится руководствоваться целым рядом факторов:

Геологическое строение участка и его гидрогеология (наличие воды);

Глубина сезонного промерзания грунта;

Конструктивные особенности здания, включая наличие подвала, глубину прокладки подземных коммуникаций, наличие и глубину заложения соседних фундаментов.

1. Учет ИГУ строительной площадки заключается в выборе несущего слоя грунта. Этот выбор производится на основе предварительной оценки прочности и сжимаемости грунтов. По геологическим разрезам. Все многообразие напластования грунта можно

При выборе типа и глубины заложения фундамента придерживаются следующих общих правил:

Минимальная глубина заложения фундамента принимается не менее 0,5 мот планировочной отметки;

Глубина заложения фундамента в несущий слой грунта должна быть не менее 10-15 см;

По возможности закладывать фундаменты выше УГВ для исключения необходимости применения водопонижения при производстве работ;

В слоистых основаниях все фундаменты предпочтительно возводить на одном грунте или на грунтах с близкой прочностью и сжимаемостью. Если это условие невыполнимо, то размеры фундаментов выбираются главным образом из условия выравнивания осадок.

2. Глубина сезонного промерзания грунта.

Проблема заключается в том, что многие водонасыщенные глинистые грунты обладают пучинистыми свойствами, т.е. увеличивают свой объем при замерзании, за счет образования в них прослоек льда. Замерзание сопровождается подсосом грунтовой воды из ниже лежащих слоев за счет чего толщина прослоек льда еще более увеличивается. Это приводит к возникновению сил пучения по подошве фундамента. Которые могут вызвать подъем сооружения. Последующее оттаивание таких грунтов приводит к резкому их увлажнению, снижению их несущей способности и просадкам сооружения.

Наибольшему пучению подвержены грунты, содержащие пылеватые и глинистые частицы. К непучинистым грунтам относят: крупнообломочный грунт с песчаным заполнителем, пески гравелистые, крупные и средней крупности, глубина заложения фундаментов в них не зависит от глубины промерзания (в любых условиях).

Kh – коэффициент, учитывающий тепловой режим подвала здания.

dfn – нормативная глубина сезонного промерзания грунта

Mt – коэффициент, численно равный ∑ абсолютных значений (-) температур за зиму в данном районе.

do– коэффициент, учитывающий тип грунта под подошвой фундамента.

3. Конструктивные особенности сооружения.

Основными конструктивными особенностями возводимого сооружения, влияющими на глубину заложения его фундамента, являются:

Наличие и размеры подвальных помещений, приямков или фундаментов под оборудование;

Глубина заложения фундаментов примыкающих сооружений;

Наличие и глубина прокладки подземных коммуникаций и конструкций самого фундамента.

Глубина заложения фундамента принимается на 0,2-0,5 м ниже отметки пола подвала (или заглубленного помещения), т.е. на высоту фундаментного блока.

Фундаменты сооружения или его отсека стремятся закладывать на одном уровне.

В других случаях, разность отметок заложения расположенных рядом фундаментов (Δh) не должна превышать:

a – расстояние в свету между фундаментами;

p – среднее давление под подошвой расположенного выше фундамента.

Фундаменты проектируемого сооружения, непосредственно примыкающие к фундаментам существующего, рекомендуется закладывать на одном уровне, либо проведение специальных мероприятий (шпунтовые стены).

Ввод коммуникаций (трубы водопровода, канализации) должен быть заложен выше подошвы

1.3.б Форма и размер подошвы фундамента

Форма бывает любая (круглая, кольцевая, многоугольная, квадратная, прямоугольная, ленточная, табровая, крестообразная и более сложная форма), но, как правило, она повторяет форму опирающейся на нее конструкцию.

Площадь подошвы предварительно может быть определена из условия:

PII – среднее давление под подошвой фундамента от основного сочетания расчетных нагрузок при расчете по деформациям;

R – расчетное сопротивление грунта основания, определяемое по формуле СНиП.

Рис. 10.12. Расчетная схема центрально нагруженного фундамента.

Реактивная эпюра отпора грунта при расчете жестких фундаментов принимается прямоугольной. Тогда из уравнения равновесия:

Сложность в том, что обе части выражения содержат искомые геометрические размеры фундамента. Но в предварительных расчетах вес грунта и фундамента в ABCD заменяют приближенно на:

, где

γm – среднее значение удельного веса фундамента и грунта на его уступах; γm=20 кН/м 3 ;

d – глубина заложения фундамента, м.

— необходимая площадь подошвы фундамента.

Тогда ширина подошвы (b):

а) в случае ленточного фундамента; A=b·1п.м.:

б) в случае столбчатого квадратного фундамента; A=b 2 :

в) в случае столбчатого прямоугольного фундамента:

— задаемся отношением длины фундамента (l) к его ширине (b) (т.к. фундамент повторяет очертание опирающейся на него конструкции).

Отсюда:

После предварительного подбора ширины подошвы фундамента b=f(Ro) необходимо уточнить расчетное сопротивление грунта – R=f(b, φ, c, d, γ).

Зная точное R. Снова определяют b. Действия повторяют, пока два выражения не будут давать одинаковые значения для R и b.

После того. Как был подобран размер фундамента с учетом модульности и унификации конструкций проверяют действительное давление на грунт по подошве фундамента.

Чем ближе значение PII к R, тем более экономичное решение.

1.3.в. Внецентренно нагруженные фундаменты

Давление на грунт по подошве внецентренно нагруженного фундамента принимается изменяющимся по линейному закону, а его краевые значения определяются по формулам внецентренного сжатия.

Учитывая, что ,

Приходим к более удобному для расчета виду:

, где

NII – суммарная вертикальная нагрузка, включая Gf и Gg;

e – эксцентриситет равнодействующей относительно центра тяжести подошвы;

b – размер подошвы фундамента в плоскости действия момента.

Двузначную эпюру стараются не допускать, т.к. в этом случае образуется отрыв фундамента от грунта.

Поскольку в случае действия внецентренного нагружения максимальное давление на основание действует только под краем фундамента, при подборе размеров подошвы фундамента давление допускается принимать на 20% больше расчетного сопротивления грунта, т.е.

, но

В тех случаях, когда точка приложения равнодействующей внешних сил смещена относительно обеих осей фундамента (рис 10.14), давление под ее угловыми точками находят по формуле:

Рис. 10.14. внецентренное загружение фундамента относительно двух главных осей инерции:

а – смещение равнодействующих внешних сил; б – устройство несимметричного фундамента.

Поскольку в этом случае максимальное давление будет только в одной точке подошвы фундамента, допускается, чтобы его значение удовлетворяло условию:

, но при этом проверяются условия:

; — на наиболее нагруженной части.

Порядок расчета внеценренно нагруженного фундамента

Определяют размеры подошвы как для ценрально нагруженного фундамента.

;

Для принятых размеров подошвы определяют краевые напряжения при внецентренном приложении нагрузки

Проверяется условие

Если равнодействующая сил смещена относительно обеих осей, тогда еще определяют краевые напряжения в угловых точках фундамента

5. Проверяют условие

Источник

10.3. Расчет фундаментов мелкого заложения

Расчет фундамента мелкого заложения начинают с предварительного выбора его конструкции и основных размеров, к которым относятся глубина заложения фундамента, размеры и форма подошвы. Затем для принятых размеров фундамента производят расчеты основания по предельным состояниям.

Вследствие причин, рассмотренных в гл. 9, расчет по второй группе предельных состояний (по деформациям основания) является основным и обязательным для всех фундаментов мелкого заложения. Расчет по первой группе предельных состояний (по несущей способности основания) является дополнительным и производится в одном из следующих случаев: сооружение расположено на откосе или вблизи него; на основание передаются значительные горизонтальные нагрузки; основание сложено слабыми грунтами, обладающими малым сопротивлением сдвигу, или, напротив, представлено скальными грунтами. В первых двух случаях расчет по первой группе предельных состояний не производят, если конструктивными мероприятиями обеспечена невозможность смещения проектируемого фундамента.

Установив окончательные размеры фундамента, удовлетворяющие двум группам предельных состояний, переходят к его конструированию. Расчет фундамента как железобетонной конструкции рассматривается в соответствующем курсе, здесь же отметим, что соблюдение правил конструирования массивных и сборных гибких фундаментов позволяет исключить проверку их на прочность и трещиностойкость.

Определение глубины заложения фундамента. Очевидно, что чем меньше глубина заложения фундамента, тем меньше объем затрачиваемого материала и ниже стоимость его возведения, поэтому естественно стремление принять глубину заложения как можно меньшей. Однако в силу того, что верхние слои грунта не всегда обладают необходимой несущей способностью или же конструктивные особенности сооружения требуют его заглубления, при выборе глубины заложения фундамента приходится руководствоваться целым рядом факторов, основными из которых являются инженерно-геологические и гидрогеологические условия строительной площадки, глубина сезонного промерзания грунтов, конструктивные особенности возводимого сооружения, включая глубину прокладки подземных коммуникаций, наличие и глубину заложения соседних фундаментов.

Инженерно-геологические условия строительной площадки. Учет инженерно-геологических условий строительной площадки заключается главным образом в выборе несущего слоя грунта, который может служить естественным основанием для фундаментов. Этот выбор производится на основе предварительной оценки прочности и сжимаемости грунтов по геологическим разрезам. Несмотря на то что каждая площадка обладает сугубо индивидуальным геологическим строением, все многообразие напластований можно, следуя Б. И. Далматову, представить в виде трех схем, показанных на рис. 10.10.

Схема I. Площадка сложена одним или несколькими слоями прочных грунтов, при этом строительные свойства каждого последующего слоя не хуже свойств предыдущего. В этом случае глубина заложения фундамента принимается минимальной, допускаемой при учете сезонного промерзания грунтов и конструктивных особенностей сооружения (рис. 10.10, а). Иногда за несущий принимают слой более плотного грунта, залегающий на некоторой глубине, если это решение экономичнее (рис. 10.10, б).

Схема II. С поверхности площадка сложена одним или несколькими слоями слабых грунтов, ниже которых располагается толща прочных грунтов. Здесь возможны следующие решения. Можно прорезать слабые грунты и опереть фундамент на прочные, как это показано на рис. 10.10, в. С другой стороны, может оказаться более выгодным прибегнуть к укреплению слабых грунтов или замене их песчаной подушкой (рис. 10.10, г). Если же мощность слабого слоя окажется чрезмерно большой, то рекомендуется перейти на свайные фундаменты (рис. 10.10, д).

Схема III. С поверхности площадки залегают прочные грунты, а на некоторой глубине встречается один или несколько слоев слабого грунта. В данной ситуации возможно принять решение по схеме II, но так как при этом придется прорезать толщу прочных грунтов, то более выгодным может оказаться или использование прочного грунта в качестве распределительной подушки (при обязательной проверке прочности слабого подстилающего слоя), как это показано на рис. 10.10, е, или закрепление слоя слабого грунта, как это показано на рис. 10.10, ж, что позволит существенно уменьшить размер подошвы фундамента.

При выборе типа и глубины заложения фундамента по любой из рассмотренных схем придерживаются следующих общих правил:

минимальная глубина заложения фундаментов принимается не менее 0,5 м от спланированной поверхности территории;

глубина заложения фундамента в несущий слой грунта должна быть не менее 10. Г5 см; по возможности закладывать фундаменты выше уровня подземных вод для исключения необходимости применения водопонижения при производстве работ;

в слоистых основаниях все фундаменты предпочтительно возводить на одном грунте или на грунтах с близкой прочностью и сжимаемостью. Если это условие невыполнимо (основания с выкликивающими или несогласно залегающими пластами), то размеры фундаментов выбираются главным образом из условия выравнивания их осадок.

Глубина сезонного промерзания грунтов. Глубина заложения фундамента из условия промерзания грунтов назначается в зависимости от их вида, состояния, начальной влажности и уровня подземных вод в период промерзания. Проблема состоит в том, что промерзание водонасыщенных грунтов сопровождается образованием в них прослоек льда, толщина которых увеличивается по мере миграции воды из слоев, расположенных ниже уровня подземных вод. Это приводит к возникновению сил пучения по подошве фундамента, которые могут вызвать подъем сооружения. Последующее оттаивание таких грунтов приводит к резкому снижению их несущей способности и просадкам сооружения.

Наибольшему пучению подвержены грунты, содержащие пылеватые и глинистые частицы. Крупнообломочные грунты с песчаным заполнителем, пески гравелистые, крупные и средней крупности относятся к непучинистым грунтам, глубина заложения фундаментов в них не зависит от глубины промерзания в любых условиях.

Практикой установлено, что, если уровень подземных вод во время промерзания находится от спланированной отметки земли на глубине, равной расчетной глубине промерзания плюс 2 м (что связано с высотой капиллярного поднятия подземных вод), в песках мелких и пылеватых с любой влажностью и в супесях твердой консистенции глубина заложения фундаментов наружных стен и колонн назначается без учета промерзания грунта. Во всех остальных грунтовых условиях глубина заложения наружных фундаментов назначается не менее расчетной глубины промерзания. Исключение составляют площадки, сложенные суглинками, глинами, а также крупнообломочными грунтами с глинистым заполнителем при показателе текучести глинистого грунта или заполнителя IL < 0,25. В этих условиях глубину заложения фундаментов можно назначать не менее 0,5 расчетной глубины промерзания от спланированной отметки земли.

Для удобства практического использования изложенные сведения представлены в табл. 10.1.

Таблица 10.1. Глубина заложения фундамента d в зависимости от расчетной глубины промерзания

Грунты под подошвой фундамента

Глубина заложения фундамента при глубине поверхности подземных вод dw, м

dw df + 2

dw > df + 2

Скальные крупноблочные с песчаным заполнителем, пески гравелистые, крупные и средней крупности

Не зависят от df

Не зависят от df

Пески мелкие и пылеватые

Не менее df

Супеси с показателем текучести IL < 0

Супеси с показателем текучести IL  0

Не менее df

Суглинки, глины, а также крупнообломочные грунты с пылевато-глинистым заполнителем при показателе текучести грунта или заполнителя IL  0,25

То же, при IL < 0,25

Не менее 0,5df

Глубина заложения внутренних фундаментов отапливаемых зданий назначается независимо от глубины промерзания, если во время строительства и эксплуатации возле фундаментов исключено промерзание грунтов. В неотапливаемых зданиях глубина заложения фундаментов для пучинистых грунтов принимается не менее расчетной глубины промерзания.

Расчетная глубина сезонного промерзания грунта

df = kh dfn

где kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений по табл. 10.2, а для наружных и внутренних фундаментов неотапливаемых сооружений—равным 1,1, кроме районов с отрицательной среднегодовой температурой, для которых расчетная глубина промерзания грунта определяется по теплотехническим расчетам; dfn — нормативная глубина сезонного промерзания грунта,м.

Нормативная глубина сезонного промерзания грунта устанавливается по данным многолетних наблюдений (не менее 10 лет) за фактическим промерзанием грунтов в районе предполагаемого строительства под открытой, лишенной снега поверхностью. За dfn , принимают среднюю из ежегодных максимальных глубин сезонного промерзания. При отсутствии данных многолетних наблюдений нормативную глубину сезонного промерзания грунтов определяют на основе теплотехнических расчетов или в соответствии с рекомендациями СНиП 2.02.01 — 83.

Таблица 10.2. Значения коэффициента kh

Коэффициент kh при расчетной среднемесячной температуре воздуха в помещение примыкающем к наружным фундаментам 0 C

Источник

Мелкозаглубленный фундамент: особенности возведени и глубина заложения

Когда проектируется мелкозаглубленный фундамент, глубина заложения является важнейшим показателем, который во многом определяет надежность всего сооружения. Фундаменты мелкого залегания широко применяются для малоэтажных строений разного назначения. С учетом важности этого элемента, расчет должен проводиться тщательно с учетом норм СНиП. Перед принятием решения о самостоятельном строительстве следует решить главный вопрос: как рассчитать глубину фундамента и все его основные параметры. Само строительство — это стандартное мероприятие, которое вполне может быть произведено своими руками.

Фундамент изнутри

Особенности фундамента

Фундаменты мелкого заложения представляют собой основание строения, глубина закладки которого, обычно, лежит в пределах 30-50 см (не более 70 см). Принцип работы такой конструкции основан на создании жесткой рамы, которая способна компенсировать пучение грунта при замерзании. При сезонных подвижках нагрузки равномерно перераспределяются, что позволяет обеспечить общее вертикальное равномерное перемещение сооружения без риска разрушения.

Фундаменты мелкого заложения имеют следующие характеристики, отличающие их от других типов оснований:

  • глубина заложения фундамента — не более 70 см;
  • основа конструкции находится выше глубины промерзания грунта;
  • может обустраиваться на почвах с высоким уровнем грунтовых вод и на пучинистых (вспученных) почвах.

Работоспособность фундамента обеспечивают следующие принципы, заложенные в конструкцию:

  1. Губина залегания фундамента, чаще всего, выдерживается в пределах 0,4-0,5 м, что исключает действие касательных усилий при морозном пучении.
  2. Жесткая рама конструкции перераспределяет нагрузки, что обеспечивает надежность на пучинистых почвах.
  3. Фундаментная основа опирается на подушку с высоким коэффициентом водной фильтрации, что позволяет отвести воду при оттаивании грунта и распределяет нагрузку на грунт.
  4. Воздействие пучения при промерзании снижается использованием утеплительных покровов на грунт шириной не менее 1 м.
  5. Если имеется высокий уровень грунтовых вод, то закладывается система дренажа.

Мелкозаглубленный фундамент может закладываться во многих типах грунтов, в т.ч. можно возводить такой фундамент при высоком уровне грунтовых вод. Запрещается его строительств на биогенных органических грунтах (торф, сапропель, ил), а также нежелательно его обустройство на неоднородных слоях грунтов, на границе разных подлежащих грунтов, на чрезмерно пучинистых почвах (пластичный глинистый водонасыщенный грунт, водонасыщенные пылеватые пески), на затапливаемых участках.

Рассматриваемый тип фундамента используется при строительстве малоэтажных сооружений, чаще всего, дач, гаражей, хозяйственных построек, бань и т.д. Его можно использовать при возведении срубов из бревен или стен из ячеистых бетонов, легкого кирпича, при возведении каркасно-щитовых строений.

Особенности конструкции

Конструирование и строительство мелкозаглубленных фундаментов нормируется требованиями СНиП, которые необходимо неукоснительно выполнять. В зависимости от назначения сооружения такие фундаменты могут быть следующего типа: ленточный, столбчатый и блочный.

Устройство ленточного мелкозаглубленного фундамента предусматривает заливку непрерывной армированной бетонной полосы в хорошо утрамбованные траншеи с песчаной подушкой. Конструктивно такая система аналогична обычной ленточной опоре, но отличается глубиной заложения, наличием теплоизоляции и дренажа. В строениях разного назначения могут быть некоторые упрощения, но в целом, устройство ленточного мелкозаглубленного фундамента имеет основные элементы и параметры, показанные на рис.1. (Рис.1. Схема ленточного фундамента мелкого заложения)

Основной смысл конструкции заложен в том, что бетонная лента должна исполнить роль очень прочной рамы (ростверка), которая перераспределяет нагрузки и исключает просадки в грунт. Цель достигается тем, что лента имеет небольшую заглубленную часть и достаточно высокую (40-50 см) надземную цокольную часть, связанные единым армирующим каркасом. Важным и обязательным элементом является отмостка с уложенным под ней горизонтальным утеплителем. Такая система уменьшает воздействие морозного пучения.

Схема закладки фундамента

При возведении достаточно легких строений (гараж, баня, сарай) используется столбчатый мелкозаглубленный фундамент из буронабивных или забивных свай, монолитных столбов и т.д. Обязательным элементом конструкции является ростверк, который связывает все сваи между собой, создавая пояс для распределения нагрузки. Столбчатый фундамент может иметь ростверк из стальных балок или монолитной армированной бетонной ленты, сооружаемой на поверхности земли.

Принцип расчета

Прежде чем начать возводить фундамент, необходимо провести расчет его основных параметров. При проектировании наиболее распространенного ленточного основания проводится определение следующих параметров: глубина залегания фундамента, ширина ленты и высота надземного ростверка. Кроме того, следует провести проверочный расчет на деформации в соответствии со СНиП 2.02.01-83. При проведении расчетов учитываются следующие факторы: тип грунта, уровень грунтовых вод, глубина промерзания почвы, нагрузка на опору, перепад высот на месте строительства.

На первом этапе проектирования обязательно проводится анализ почвенных характеристик, и, прежде всего, определяется тип почвы. Основные почвенные характеристики можно определить самостоятельно. Для этого выкапывается небольшая яма на глубину фундаментного заглубления, и извлекаются образцы грунта. Почва увлажняется и скатывается цилиндром длиной 14-16 см и диаметром 10 мм. Затем, делается попытка сворачивания из образца кольца — если цилиндр при закручивании разрывается, то грунт — суглинок; если сохраняет форму, то — глинистая почва. Супесь вообще не формируется таким образом, а разваливается.

Пористость почвы определяется следующим образом. Из грунта вырезается куб со стороной 10 см и взвешивается — определяется объемная масса (М1). Потом, куб раздавливается, уплотняется и снова взвешивается — масса сжатого грунта (М2). Коэффициент пористости рассчитывается из формулы Е = 1 — М1/М2, где М1, М2 выражаются в кг/см³.

Сечение мелкозаглубленного фундамента

Глубина фундамента для гаража или другого сооружения зависит от глубины промерзания грунта, которая отличается в разных климатических зонах и для разных типов почв.

Средние значения этого параметра сводятся в таблицы по регионам. Например, в районе Москвы суглинки промерзают на 1,35 м, средний и крупный песчаник — на 1,76 м; в Ростове — 0,8 м и 0,88 м, соответственно; а в Тюмени — 1,8 и 1,98 м.

Минимальная глубина

Как определить глубину заложения фундамента? Глубина фундамента под гараж, баню и т.д. определяется, исходя из минимально допустимых показателей. В свою очередь, минимальная глубина залегания фундамента зависит от глубины промерзания почвы, степени ее пучинистости (коэффициента пористости) и высоты залегания подземных вод. Увеличение глубины промерзания и более близкое расположение воды повышает нагрузку при сезонном пучении, что требует увеличения заглубления фундамента. В то же время, при хорошем утеплении конструкции и обеспечении надежного дренажа, значение этих воздействий существенно снижается и их можно не учитывать.

Глубина фундамента для гаража или др. сооружений производится исходя из таблицы, рекомендуемой СНиП.

Глубина промерзанияпочвы без пучинистости, м Глубина промерзания пучинистой почвы твердой и полутвердой консистенции, м Минимальная глубина заложения фундамента, см
Не более 2 Не более 1 50
Не более 3 Не более 1,5 75
Более 3 1,5 — 2,5 100
2,5 — 3,5 150

Расчет параметров

Определение глубины заложения фундамента для гаража или другого сооружения требует уточнения по действию нагрузок. Важнейшим параметром ленточного фундамента является ширина ленты (подошвы). Вместе с глубиной закладки ширина обеспечивает допустимые нагрузки на грунт, с целью недопущения проседания. Расчет фундамента мелкого заложения основан на учете этих основных характеристик.

Ширина подошвы определяется по формуле В = Q/R, где Q — расчетная нагрузка на фундамент, равная массе всех элементов сооружения; R — сопротивление грунта (является табличной величиной и различно для разных грунтов). При определении нагрузки складываются массы следующих элементов: стены с отделкой, фундамент с цоколем, потолочное перекрытие, дверные и оконные системы, гидро- и теплоизоляция, стропильная система и крыша, все внутреннее оборудование (мебель, сантехника и т.д.).

Проверочный расчет конструкции ведется по удельному давлению на грунт (Р). Значение показателя рассчитывается по формуле Р = Q/S, где S — площадь поверхности ленты фундамента. Полученная величина выражается в кг/м² и сравнивается с допустимым значением R для конкретного грунта. С учетом необходимого запаса прочности Р должно превышать R на 20-22%. При отсутствии запаса придется увеличивать ширину подошвы.

Мелкозаглубленный фундамент позволяет значительно снизить затраты на строительство некоторых строений без снижения их надежности. Важным показателем для обеспечения требуемой прочности является глубина его заложения (выше глубины промерзания), которую следует выбирать, исходя из требований СНиП.

Источник

Расчет фундаментов мелкого заложения

Расчет фундаментов мелкого заложения необходим для уточнения его геометрических размеров и выбора разновидности фундамента. Он сводится к расчету трех факторов: величины давления здания на грунт, силы давления грунта в результате морозного пучения и определение прочности рамы фундамента.

Расчет фундаментов мелкого заложения

Нагрузка здания – это совокупность передаваемых нагрузок, в упрощенном расчете – масса всего строения, распределенная на 1 м 2 нижней плоскости фундамента. Сила деформации пучения определяется по справочным данным для конкретного типа грунта. Прочность рамы зависит от геометрии фундамента и применяемой арматуры.

Расчет нагрузки здания

Для того чтобы вычислить массу здания, необходимо иметь проект, учитывающий размеры строения, материалы, конструкцию и прочие его особенности. Расчет нагрузки на фундамент ведется с учетом зимней снеговой нагрузки. Способ расчета прост: вычисляют массы отдельных конструктивных частей строения, суммируют их и делят на площадь подошвы фундамента. Определяют для данного типа грунта удельное расчетное сопротивление грунта R­ и сопоставляют его с полученным значением удельной нагрузки N. Если R­ < N, пересматривают размеры или форму фундамента: выполняют его с широкой подошвой, с расширением книзу или увеличивают его ширину.

Пример расчета: кирпичный одноэтажный дом 10х8 м, со стенами из полнотелого красного кирпича шириной в 0,4 метра, с железобетонным перекрытием пола и деревянными перекрытиями потолка. Крыша – двускатная, крытая профнастилом. Постройка планируется на тяжелой суглинистой почве, регион – Москва.

По приведенной методике расчета нагрузка N = 23 т/м 2 .

Морозное пучение и выбор типа мелкозаглубленного фундамента

Понятие «пучинистые грунты» многих ставит в тупик. Попробуем разобраться, что это такое. Различные грунты обладают разной способностью накапливать влагу. Крупнозернистый песок, скальные породы не задерживают воду, а глины, наоборот, связывают ее, становятся пластичными и долго остаются влажными. Вода при замерзании расширяется, при этом грунт, содержащий много влаги, увеличивается в размерах. Это явление получило название «морозное пучение».

В зависимости от состава и размера частиц грунты можно разделить на 5 групп – они приведены в таблице 1.

Разновидности грунта

В зависимости от группы грунта выбирают конструкцию мелкозаглубленного фундамента по рисунку и определяют его габаритные размеры, глубину заложения и высоту подсыпки. Вычисляют площадь нижнего основания фундамента Af.

По данным таблицы и рисунку выбираем группу фундаментов, соответствующую типу грунта III «тяжелые суглинки». Это фундамент, не заглубленный в грунт, на песчано-гравийной подсыпке. Ширина фундамента – 0,4 м; высота – 0,7 м; толщина подсыпки – 0,5 м.

Методика расчета деформаций

Расчет проводят по двум условиям:

  • расчетная величина деформации пучения не превышает допустимой предельной деформации;
  • относительная деформация грунта с учетом нагрузки не превышает предельной относительной для конкретного типа строения.

Предельные деформации для конкретного типа строения определяют по таблице 2.

Таблица 2 – Допустимые деформации

Чтобы определить указанные величины деформаций для конкретного строения, нужно произвести ряд сложных расчетов.

Деформацию пучения вычисляют по формуле

Формула для расчета деформации пучения

В этой формуле N – удельное давление всего строения на грунт, оно вычисляется по отдельной методике и выражается в тоннах на 1 м 2 .

Коэффициент b зависит от соотношения толщины подсыпки к ширине основания, он определяется по таблице 3.

Таблица 3 – Определение коэффициента

Величина Pr – на подошву от пучинистого грунта, для ленточного фундамента оно вычисляется по формуле:

Величина Pr – на подошву от пучинистого грунта

Показатель b – ширина ленты фундамента, а ss – сопротивление промерзшего грунта, его можно найти в СНиП 2.02.01-83.

Мощность слоя грунта, подверженного вспучиванию под фундаментом dz определяется как dz = df – d – hп, где df – средняя глубина промерзания, определенная по таблице 4, а величины d и hП – высота фундамента и толщина подсыпки, в метрах.

Таблица 4 – Средняя глубина промерзания грунта по регионам

Средняя глубина промерзания грунта по регионам

После расчета мощности слоя грунта dz определяют по графикам коэффициент условий работы промерзающего грунта ka определяемый по графикам в зависимости от величины dz и значения площади подошвы фундамента Af на единицу его длины.

График - коэффициент условий работы промерзающего грунта k

Деформацию пучения ненагруженного основания hfi находят по формуле из таблицы 5, соответствующей типу выбранного фундамента и его геометрическим размерам: глубины заложения фундамента d и толщины подушки hп.

Таблица 5 – Расчетные формулы для различных типов грунтов

Расчетные формулы для различных типов грунтов

    1. Определяем мощность промерзающего слоя пучинистого грунта dz = df – d – hп. Расчетная глубина промерзания df для Москвы по таблице 4 равна 1,4 м. dz = 1,4-0,7-0,5=0,2 м.
    2. Определяем удельную площадь фундамента на метр его длины, при ширине фундамента 0,4 м площадь равна 0,4 м 2 .
    3. По рисунку определяем коэффициент ka, он равен 0,56.
    4. Находим по СНиП 2.02.01-83 показатель σs – 64.
    5. Определяем по формуле т/м 2 .
    6. Находим по формуле м
    7. Находим коэффициент b по таблице 3 для фундамента ленточного типа: для выбранного соотношения толщины подсыпки к ширине основания 0,5/0,4=1,25 он равен фундамента 0,88.
    8. Нагрузка здания, согласно расчетам, равна 23 т/м 2 .
    9. Определяем м = 0,1 см.

    Относительную деформацию пучения с учетом жесткости рамы строения находят по формуле

    Формула - для деформацию пучения с учетом жесткости рамы

    Показатель w, находящийся в зависимости от коэффициента гибкости конструкций строения l по ВСН 29-85, определяют по приведенному графику.

    Показатель W определяют по графику

    Dhfp– разность деформаций пучения при максимуме и минимуме предзимней влажности грунта.

    L – длина стены строения, м.

      • Определяем по методике ВСН 29-85 значение показателя гибкости конструкций строения l – 0,55.
      • Определяем по графику значение показателя w – 0,03.
      • Определяем разность деформаций пучения по методике ВСН 29-85. Dhfp = 0,0022 м.
      • Длина стен строения равна 10 и 8 м.
      • Относительная деформация с учетом жесткости рамы для длинной стены м.
      • Для короткой стены м
      • Допустимое значение по таблице 2 – 0,0005 м. Условие выполняется.

    Если в результате расчета окажется, что условия не выполняются, необходимо увеличить расчетную толщину подушки или площадь фундамента, изменив ширину основания.

    Источник

    Читайте также:  Установка опалубки для фундамента забора
Adblock
detector